UNIT-1lI

Time domain analysis: Introduction, standard test signals- time response
specifications-steady state error constants



TIME RESPONSE

The time response of the system is the output of the closed loop system as a function of time. It is
denoted by c(t). The time response can be obtained by solving the differential equation governing the
system. Alternatively, the response c(t) can be obtained from the transfer function of the system and the
input to the system,

Cs) _ G(s)

The closed loop transfer function,
R(s) 1+ G(s)H(s)

= M(s) 2,13

The Output or Response in s-domain, C(s) is given by the product of the transfer function and the

input, R(s). On taking inverse Laplace transform of this product the t1me domain response, ¢(t) can be
obtained.

Response in s-domain, C(s) = R{s) M(s) | | | | e 2.2)
Response in time domain, c(t)= L{C(}=LYREeHxME} e (2.3
where, M(s) = Gs)
1+G(s)}H(s)

The time response of a control system consists of two parts : the transient and the steady state
response. The transient response is the response of the system when the input changes from one state to
another. The steady state response is the response as time, t approaches infinity.



TEST SIGNALS

The knowledge of input signal is required to predict the response of a system.

The characteristics of actual input signals are a sudden shn::k, a

sudden change, a constant velocity and a constant acceleration. Hence test signals which resembles these

characteristics are used as input signals to predict the performance of the system. The commonly usad
test input signals are impulse, step, ramp, acceleration and sinusoidal signals.

The standard test signals are,

1. a) Step signal | 2. a) Ramp signal 3. a) Parabolic signal
b) Unit step signal b) Unit ramp signal b) Unit parabolic signal
4. Impulse signal 5. Sinusoidal signal.

Since the test signals are simple functions for time, they can be easily generated in laboratories.

STEP SIGNAL

The step signal is a signal whose value changes from zero to A at t = 0 and remains constant at A for t > 0.
r(t)A

Y



r(t)=A u(t)

u(t)=1 fort = 0
—0 fort <0 Laplace transform of step signal is R(S)= A/s

. A special case of step sig_nal is unit step in which A-is unity.

RAMP SIGNAL r(t) A
The ramp signal is a signal whose value increases linearly with fime A
from an initial value of zero at t = 0. B o
The mathematical representation of the ramp signal is, .
r)=At ; t=20 5 1 3 1;
=0 ; t<0 Fig 2.3 : Ramp signal.

Laplace transform of ramp signal is R(S)= A/S?

A special case of ramp signal is unit ramp signal in which the value of A is unity.



PARABOLIC SIGNAL r(t) A

In parabolic signal, the instantaneous value varies as square of the 4.5Af=--=-=--="~

time from an initial value of zero at t = 0. The sketch of the signal with

2ALacemn--
respect to time resembles a parabola. 0.5AL -~ - ,
The mathematical representation of the parabolic signal is, o bz
| 2
=20 ;120
2 7% £
=0 ; t=<0

A special case of parabolic signal is unit parabolic signal in which A is unity.

IMPULSE SIGNAL

A signal of very large magnitude which'is
available for very short duration is called impulse ok
signal. 1deal impulse signal is a signal with infinite
magnitude and zero duration

.

s J



Where,w = 27 f

The impulse signal is denoted by 6(t) and
nathematically it is expressed as,

O(ty=c0; t=0

=0: t#0

An impulse function is derivative of step function

Sinusoidal Wave Signal

Sine Wave or Sinusoidal Wave Signal is a special type of signal. It is given by the function

f(t) =sin(wt) or f(t) = Asin(wt+ ¢)
Where,w =27 f

When Sine wave starts from zero and covers positive values, reaches zero; and again covers
negative values, reaches zero, it is said to have completed one cycle or single cycle.

The upper part of sine wave is called positive cycle and the lower part is called negative cycle in
a single cycle.
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The Maximum value of the Sinusoidal Signal is also called its amplitude (A). Here w is called
Angular Frequency of Signal and f is the Frequency of Signal. @ Is called Phase difference.

Sinusoidal signals are important in both electrical and electronic engineering domains.



Name of the signal

Time domain equation
of signal, r(t)

Laplace transform of
the signal, R(s)

A
Step A S
: 1
Unit step l —
5
A
Ramp At =
) 1
Unit ramp t 2
2 A
Parabolic i;— 3
. _ 2 1
Unit parabolic EY 3
Impulse o(t) 1




TIME DOMAIN SPECIFICATIONS

The desired performance characteristics of control systems are specified in terms of time domain

specifications.

The desired performance characteristics of a system of any order may be specified in terms of the

fransient response to a unit step input signal.
The transient response characteristics of a control system to a unit step input is specified in terms

of the following time domain specifications.

1. Delay time, t,
2. Rise time, t
3. Peak time, t,

4. Maximum overshoot, MP

5. Settling time, t,

The time domain specifications are defined as follows.

1. DELAY TIME (t )

2. RISE TIME (t)

3. PEAK TIME (t)

It is the time taken for response to reach 50% of the final value, for
the very first time.

It is the time taken for response to raise from 0 to 100% for the very
first time. For underdamped system, the rise time is calculated from
0 to 100%. But for overdamped system it is the time taken by the
response to raise from 10% to 90%. For critically damped system, ii
is the time taken for response to raise from 5% to 95%.

It is the time taken for the response to reach the peak value the very
first time.



Allowable error
2% or 5%

-y

LY el LI L, L'I"I.P-u

4. PEAKOVERSHOOTM) : It is defined as the ratio of the maximum peak value to the final value
where the maximum peak value is measured from final value.

Let, c¢(e0)= Final value of c(1).
c(tp) =Maximum value of c(t).

c(ty) — ()

Now, Peak overshoot, M, = )
[

e(t,)—c(x) y

c(eo)

100

% Peak overshoot, %M, =



: Ly .
5.SETTLING TIME (t) + It is defined as the time taken by the response to reach and.stay withiz
a specified error. It is usually expressed as % of final value. The usual

tolerable error is 2 % or 5% of the final va_]}le.

EXPRESSIONS FOR TIME DOMAIN SPECIFICATIONS

Rise time (t)
The unit step response of under damped second order system is given by,

=Lt
Ce(t)y=1- sin(w 4t +90)
1-¢
Att=t, c(t) = c(t) =1
Lot
se(t)=1- sin(@4t, +6) =1
J1-22 |
gt On constructing right
—g n*r . .
- sin(ot, +8)=0 angle triangle with { and J1-¢*
. _ . we get
Since —e "'t 0, the term, sin (o,t, +0)=0 & !
When, ¢ =0,7,2%,37... , sin ¢ = 0 i-¢2 1-£
tan B =
Logt +0=m | L _

.(ﬂdtrl =T|:-G

]

1 o n—0
| .. Rise Time, t, =
1 @yq

| S




f] _ 2
Here, 0 =tan™ Iq - - Damped frequency of oscillation, o, = ,/1-°

- Risetime, t, =

g or tan’ should be measured in radians.

Jic
C

Peak time (t)

To find the expression for peak time, t, differentiate c(t) with respect to t and equate to 0.
d
e, —c(t =0
Le, — c( }L=tp
The unit step response of under damped second order system is given by,

=Lt

ceft) =1~ ©

sin(w,t+90)
1-5

Differentiating c(t) with respect to t.

_,_e{"} ot _a—aeqt

ad?:(t)= ﬁ (qun)sin{mdt+G)+[ - J cos(w,t+8)o,

Put, o, =0 41-&




d g ont ©_1-C°

o — = 1 8) - ——A——
ot c(t) = Ji—_ﬁz (Co,) sin(o,t+0) Jl_-g-i
_® g “at

¢ sin(m t+0)—1-C* cos(® t+8}}
=l /

e " cos(w,t +0)

S e{““‘[cﬂsﬂ sin{o 4t +0) —sind cos(wt +B}] |
1-¢* -

=% — ¢ [sin(@,1 +6)c0sd — cos(,t +8)sin6]
1-C
] i3]

=t ¢ |sin{(m,t+6)-8) = ¢ gin(p,t)
Jime . [ ‘ ] J1-27 d
att=ty, —c(t)=0

o ‘ _
B o alp sin(@qty) =0

On constructing right

o angle trianele with & and J1-2
Since, ¢ °"'? =0, the term, sin(@g4t, ) =0 g g g :
‘When ¢ =0, n, 2x, 3=, sing =0 we gel
._ mdtp =T I_C-'Z I ] _ ;?;.n
] - T tan 6 = 7
| . Peak time, t, =— | | e -
E - md =

The damped frequency of oscillation, 04 =441~

T |

. Peak time, t, = —F=—|.
) @, l_gzi




Peak overshoot (Mp)

%Peak overshoot, %M, =

(1) = (=)
v Cs)

100

where, c(tp) = Peak response at t = t, -
c(o0) = Final steady state value.
The unit step response of second order system is given by,

=Syt

c(t)=1- sin(m 4t +0)
1-¢2 |
Att=w, oft) = ¢(®) = 1-—— sin(@ t+0) = 1-0
1-¢7
—Lopty
Att=tp, c(t)=c{tp}=1—‘/i1siﬂ(mdthrE')
| 1-&
o

1




i Note : On constructing.
=1+~ sinb right ang!e .friangfe with
I’ 2
V1= fand \1-C°, we ge
on
= ’x
1-¢? - ] 2 sinB =4/1— L
:]_—|~'3 1-8° = l+e g
1-¢7
- =R
_ofty) ~c(eo US ST
Percentage Peak Overshoot, %M, ( }{ }( ) x 100 = ite ! 100
Cl oo
= Vit x 100

.
.. Percentage Peak Overshoot, %My, =e VIS %100

Settling time (t)

The response of second order system has two components. They are,
E—Zmﬁt

1. Decaying exponential component, .fl o
2. Sinusoidal cnmpnnent', sin{w t + 0).
In this the decaying exponential term dampens (or) reduces the oscillations produced by sinusoidal

component. Hence the settling time is decided by the exponential component. The settling time can be
found out by equating exponential component to percentage tolerance errors.



e_";wﬂts

For 2 % tolerance error band, at t =, (—1 2 =042
For least values of  , e 5! = 02 .
On taking natural logarithm we get,
Lo, t,=n(002) = -lo it =-4 = t= 1
. Cmn
For the second order system, the time constant, T =— !
LD
- ‘1
. Settling time, t_= rl =4T  (for 2% error)
| (o,
For 5% érr(}r, e™5%nts = 005
On taking natural logarithm we get,
—Cw,t, = Mm(0.03) = —Co,t =-3 - t,= 3
. - Loy
- Settling time, t_= C3 =3T  (for 5% error)
_ O

In general for a specified percentage error, Settling time can be evaluted using equation

In(% error) _ In(% error)
Co, T

. Settling time, t, =




4
s(s+95)

1)  obinthe response of unity feedback system whose open loop transfer function is G(s) = and when the input

is unit step. -
SOLUTION - R(s) C(s)

The closed loop systemis shown in fig 1.

Cls) G(s)

The closed loop transfer function, = . ' :
) R(5}4 1+ G(s) . " Fig 1: Closed loop system.

C(s) s(s+5) _ s(:B) 4 4 4

"RS) 4,4 s(stD5)¥4 " 5(s+5)+4  s7+55+4 (s+4)(s+1)
s(s+5) s {s+5)

4
(s+1) (s+4)

The response in s-domain, C(s) = R(s)

. . . . - 1 4
Since the input is unit step, R(s)=—; - C(s) =
p P, RES)=1 (s) SEiN e

By partial fraction expansion, we can write,

C(s}: 4 =~£+-E-—+ C
s{s+1)(s+4) s s+1 s+4

___4 | _.4

$=07 (5+1) (s+4)

B 4
1 s(s+4)

B 4
T s(s+1)

" A=C(s) x s

s5=0

B=C(s) x (s+1)), _

5= -1

C=C(s) x (s+4),_ _,

5= -



The time domain response c(t) is obtained by taking inverse Laplace transform of C(s).

Response in time domain, c(t) = L'”{C{s}}:f*{i _4 _1_.+1 1 }

S 3 s+1 5 s+4
4 1 1
=l-—ets—eM = 1-= |4t ™
3 +3 3[ ]

RESULT

Response of unity feedback system, c{t)=1- %[4&"* - e"“]

2)
A positional control system with velocity feedback is shown in fig 1. What is the response of the system for unit step
input. o | _ |
SOLUTION R(s) 100 | C(s)

' >
_ : s(s+2) -
The closed loop transfer function, : : -
Cls) __ Gls) 0.1s+1

R(s) 1+G(s) H(s)

Fig 1 : Positional control system.

Given that, G(s) = 100 and H(s)=0.1s+1
: s{s+2)
100 . 100
. C(s) s(s+2) B - s5(s+2) . _ 100 B 100
TR(s) 100 - s(s+2)+100(0.1s+1)  s24+25+10s+100 s°+125+100
1+(5{5+2)]({].15+1} s(5+2)



100
s2+125+100

The response in s-domain, C{s)=R(s)

# * ¥ " 1 .
Since input is unit step, R(s) = s

100 _ 100
s2+125+100 s(s®+125+100)

-~ C(s) =%

By partial fraction expansion we can write,

Cls) = 100 _A,  Bs+C
. s(82+12s+100) s s2+12s+100

| The residue A is obtained by multiplying C(s) bﬁr sand lettings=0.

10 | _100_,
s=0" g2 1125 +100[,., 100

A=C(s)x s

100 _A Bs+C
s(s?+12s+100) s s%+12s+100
' 1UD=A{52+125+200}+{85+C} 5

100 = As® + 12As + 100A + Bs? + Cs

On equating the coefficients of sweget, 0=A+B s B=-A=-1
On equating coefficients of s we get, 0=12A+C S C=-12A=-12
1 —s—12 _ 1 s+12 o s+6+6
~0s) = —+— = == =TT Z_ g2
s s5°+125+100 s s°+125+36+64 5 (s+6)°+8
_ 1 s+6 _ 6 _ 1 s+6 6 8
s (s+6)°+82  (s5+6)>+82 s (s+6)°+8% 8 (s+6)2+82



The time domain response is obtained by taking inverse Laplace transform of C(s).

, 1 S+6 6 8
Time response, c(t) = £{C(s)} = LJ{E_ (s+6)2+82 8 (s+6)2+ 82}

=1-e M cos8t- % e sin8t=1- e*‘[% sin8t + cos&t}

3) _
The response of a servomechanism is, c(t) = 1+ 0.2 e® - 1.2 &' when subject to a unit step input. Obtain an

expression for closed loop transfer function. Determine the undamped natural frequency and damping ratio.

SOLUTION

Giventhat, c{)=1+0.2e%-12e™® |
On taking Laplace transform of c(t) we get,

1 1 1 (s+60)(s+10)+0.25(s+10)-1.2 5 (5+60)
qu_g+ﬂ'2 (s +60) 2{s+1E:|) - s (s +60) (s +10)
_s°+70s+600+025°+25-125*-72s - 600 _ 1 600
s (s+60) (s +10) s(s+60)(s+10) s (s+60)(s+10)



Since input is unitstep, R(s) = 1/s.
| 60 _pisy 800
(s+60) (s+10) s2+70s+600

C{s) _ 600
R(s) s°+70s+600

- C(s)=R(s)

. The closed loop transfer function of the system,

AR T W T

The damping ratio and natural frequency of ns-:llianun can be estimated by comparing the system transfer fl.rncttun with
standard form of second order transfer function. .

C(s) 2 600

n

' Rs) $°+2Zostol  s2+70s+600

On comparing we get,
= BGD \ zfmn — 70
. @, =600 =24.49 rad/sec E o L= 70 0 _ 143
" . I 20, 2x 2449
RESULT
. The closed loop transfer function of the system, ggsi = 2o Ei} ==

Natural frequency of oscillation, o, =24.49 rad/sec
Damping ratio, &= 1.43




4)
The unity feedback systemis characterized by an open loop transfer function G(s) =K/s (s +10). Determine the gain K,
so that the systemwill have a damping ratio of 0.5 for this value of K. Determine peak overshoot and time at peak avershoot for
a unit step input.

SOLUTION R(s) C(s)
The unity feedback system is shown infig 1. | %
. Cs)  Gs) ' | .
The closed loop transfer function RS) 1% G(s) Fig 1 : Unity feedback system.
Giventhat, G(s)=K/s (s +10)
_K_
CC(s) __s(s+10) K - _ K
URS) 14 K s(s+10)+K s*+10s+K
s(s+10) .

The vaiue of K can be evaluated by comparing the system transfer function with standard form of second order transfer
function. : ' '

. Cs) _ 0} _ K
" OR(s) s?+2os+or  s°+10s+K
On comparing we get,
of=K - 2o, =10 | K=100
;.mn=JE. Putl’;=ﬂ.53ndmn=~fﬁ o, = 10rad/sec
~2x05xyK =10 |
JK =10

The value of gain, K=100.



2
Percentage peak overshoot, %M, =e™~™V"=" x100 -

= g 055?100 = 0163 x 100 =16.3%

. T T o
Peak time, t; = o, = o 1_(;2 = 10.,/1_?:1_5_2 =(0.363 sec
RESULT | 1
Thevalueofgain, | K = 100
Percentage peak overshoot, %M = 16.3%
Peak time, | t = 0.363sec

1]

5)

The open loop transfer function of a unity feedback system s given by G(s) = K/s (sT + 1), where Kand T are positive
constant. By what factor should the amplifier gain Kbe reduced, so that the peak overshoot of unit step response of the system
is reduced from 75% t0 25%. _ ' : :

. | .
SOLUTION Rs) O] )
The unity feedback system is shown in fig 1.

_ - : on Cfs) _G(s) - , , -
The closed loop transferfuncﬁon, o) - 15 G Fig 1 s Unity feedback system.
Giventhat, G(s) = K/s (sT +1)
o Us)  Kis(sT+1) K K KIT
Rs) 1+K/s(ST+7) s(sT+N+K s’T+s+K 2, 1_ K

Expression for £ and o_can be obtained by comparin thetransferfuncfgn ith th '
transfer function. n Y paring ion with the standard form of second order

C(s) ©3 COKIT

. - 2_ .2_
R(s) s°+2Lo, s+ | 52+¢5+_§_




- s 4k ) b —1— —b —'— ———

. T
On comparing we get,
02=K/T 2w, =1T .
fo,=KIT LI R

20T
@n 2\/§T 2JKT

The peak overshoot, M, is reduced by increasing the damping ratio ;. The damping ratio £ is increased by reducing the
gain K. - ' .

When M, =0.75, Let£L =, and K=K,
When M, =025 Llet{=¢, and K=K,

N e
Peak overshoot, M, =e """
Taking natural logarithm on both sides, /n M, = —==
1-&2
p2,2
On squaring we get, (In M,)? = :I“ =

On crossing multiplication we get,
(1-C*) (mM,)? =g

(iIn M)? —£2(In M,))? = £%7?

(M) =522 +£2(In M)



(InM,)? =2 [Tr +{in MD)E] On equating, equation (1) & (2) we get,
2. ' 1 (In M,)?
2 (InM,) ' =— P
S My (1) AKT 2 +(InM,)?
Butf—L L2 1 2 l: 4T(3”Mp}2
coaJkT T > ST (@) K n%+(n M)
2.(n075)2 9952 3006 w2 +(In M,)?
K=K, M =0.75, - K, =~ *( _ - K=
When M, =0 ' 4T (In075)2 03317 . T 4T (In M, )

24+(n025)2 1179 153
Whn:K= -M= ;5, .'.Kzﬂ +{ = =
© % 02 > 4T (In025)%  768T T
K, _ (1/T)30.06

. =19,
K, (1/T)153 96

2+ (In0.75)% 9952 30.06
When, K=K ,M =075, - K, =T - _ _
o R ' 4T (In0757 0331 . T

240252 1179 153
When, K=K, , M, =0. | o K, = T UNn025)7 =
onR=¥ 025 >7 AT (n025)2 7687 T

=106

K, (1/T)30.06
K, (1/T)153

K,=19.6K, (o) K2=%EK

To reduce peak overshoot fram 0.75 to 0.25, K should be reduced by 19.6 times (approximately 20 times).
RESULT

The value of gain, K should be reduced approximately 20 times to reduce peak overshoot from 0.75 0 0.25.




6 _
) A positional control system with velocity feedback is shown in fig 1. What is the response c(t) to the unit step input. Given

that{ =0.5. Also calculate rise time, peak time, maximum overshoot and settling time.
SOLUTION |

R(s) 16 C(s)

Cls)  Gls)
R(s) 1+ G(s) H(s)

Given that G(s) = 16/s(s + 0.8) and H(s) = Ks +1

The closed loop transfer function,

16 Fig 1
. Cls) s {s+08) B 6
" Rss) 4, 16  s(s+0.8)+16(Ks+1)
1+s(5+{].8} (Ks+1)
16 16

T 32+085+16Ks+16  S2+(08+16K) s+ 16

The values of K and @, are obtained by comparing the system transfer function with standard form of second order
transfer function.

C(s) _ o2 16

" R(s) s+ Zo.s+ol s +{08+16K) s+ 16
Oncomparingwe get.
oZ=16 0.8+16K=2Co,
- o, =4rad/sec L K= 2w, —08 _2x05x4-038 =0.2
16 16
Cls) _ 16 16

" Rie) 22 (08+18x0Ns+18 =2+ ds .16



Given that the dampihg ratio, £= 0.5. Hence the system is underdamped and so the response of the system will have
damped oscillations. The roots of characteristic polynomial will be complex conjugate.

16

Th = —d " ] — y ——
e response in s-domain, C(s)=R(s) Zi i< 16

For unitstep input, R(s) =1/s,

_ C(s}—-l 16 B 16

" s s?+4s5+16 s(5°+4s+16)
By partial fraction expansion we can write,

Ofs) = 16 §+ Bs+C

T s(s2+4s+16) s sP:i4s:16
The residue A is obtained by multiplying C(s) by s and letiing s = 0.

i __ 18 | _16_
A'C(s}x5|s=D_52+4$+1515=nm16_1

The residues B and C are evaluated by cross multiplying the following equation and equating the coefficients of like
powers of s. '
16 A Bs+C

S(s2+45+16) s s2+4s+16
On cross multiplicationweget, 16=A(s?’+4s5+16)+(Bs+()s
| 16 = As?+4As + 16A+Bs2+Cs




On equating the coefficients df sfweget,0=A+B .. B=-A=-1
On equating the coefficients of swe get, 0=4A+C .. C=-4A=-4

1 -s—-4 1 s+4
L CS) =t
s s°+4s+16 s s“+4s+4+12
1 s+2+2 _ 1 S+2 2 V12

s (5+2°%+12 s (s+20°+12 fi2 (s+2)?+12

The time domain response is nbtamed by taking inverse Laplace transform of C(s).
The response in time domain,

1 )1 5+2 2 Ji2
dﬂ:f{C{s}}':{g_{mszzF@ (s+2}2+12}

=1me—mmsﬁt—% e‘g‘sin-\m?_t

=1{—eg@ [%sinw’ﬁ t) +cos(v12 t}}

fr -
Damped equency}% —®, ;1_;;2 _ 4,}1__ 052 = 3.464 rad / sec

of oscillation

. Rise time, t, = -6 _=_104/ = 0.6046 sec

Peak time, t, =— =907 sec

T
O 3464

—Lx —{].5;: x

%M, = e x100=e'+05 x100 = 0163 x100=163%

% Maximum
overshoot



Ti 1tatT— LI
ime constant, Y

n

=05 sec

For 5% error, Settling time, t,=3T=3x0.5=1.5sec
For 2% error, Settling time, t, =4T=4x0.5=2sec

RESULT |
i-sin[ﬁ t)+ cos(v12 t}}

The time domain response, c{t)=1- e‘z‘{ 7

(or) c(t)y=1- ie‘m[sin{\/ﬁ t+ 1.047}]

J3
Rise time, t, = 0.6046 sec
Peak time, ' t,=0.907 sec
% Maximum overshoot, %M = 16.3%
Settling time, t.=1.5sec, for5% error

=2sec, for2%error

7) A unity feedback control system is characterized by the following open loop transfer function G(s) =(0.4 5 +1)/s(s +0.6).
Determine its transient response for unit step input and sketch the response. Evaluate the maximum overshoot and the

corresponding peak time.
SOLUTION

Cs) . Gs)
R(s) 1+ G(s) H(s)

The closed loop transfer function,

~ Giventhat, G(s)=(0.4 5 +1)/s(s +0.6)
For unity feedback system, H(s) = 1.



U4ds+1

_ C(s}':_ G(s) . s(s+0.6) 04 s+1
UR(s) 1+G(s) 4, 04s+1 " 5(5+0.6)+0.45+1
s(s+0.6) '
_ 0.4s5+1 _ 04s+1
s°+065+04s+1 s”+5+1
The s -domain response, C(s)=R(s) x -O-ﬁﬂ
s°+s+1

For stepinput, R(s) = 1/s.

1 04s+1 04s+1
- C{s}z_ 3 = 5 :
S s°+s+1 s(8“+s+7)

By partial fraction expansion C(s) can be expressed as,
' 0.4 5+1 A Bs+C

s(sZ+s+7) TS sis+i
The residue A is solved by multiplying C(s) by s and letting s =0.

04s+1
,‘.ﬁ.:C{S}xSL:ﬁ:SE—ﬂ":{ u=1
o=

- = =Y

The residues B and C are solved by cross multiplying the following equation and equating the coefficients of like powers of s.
04s+1 A Bs+C

e ——— +—.———
s(s?+s+17) s s?+s+1

Cs) =

On cross multiplication we get,
04s+1=A(s?+s+1)+(Bs+C)s
04s+1=As?+As+A+Bs?+Cs
On equating coefficients of s’we get, 0=A+B ~B=-A=-1
On equating coefficients of swe get, 0.4=A+C - C=04-A=-086



©Cfe)= 5206 1 s+06 1 - 5+0.6
. 540254075 s (s?+2x055+05%)+0.75

s 52+5+1 'S s

_ 1 s+0.5+0.1 _l _ 5+0.5 0.1 J0.75
s (s+05°+075 s (s+05°+075 4075 (s+0.5)2+0.75

The time domain response is obtained by taking inverse Laplace ransiom o1 u{s).
-. Theresponse in ime domain,

1 s+05 01 J0.75 }

= =rl—— = ——
ot)= LHCs) =L {s (s+052+075 4075 (s+05)>+075

01
=1-e9% 005075 t - —— e *%sin/075 t
Jo7s -

=1- 54'5"[0.1 155 sin(v/0.75 t) +cos(v0.75 t}]

The transient response is the part of the output which vanishes as ttends to infinity. Here as t tends to infinity the
exponential component %% tends to zero. Hence the transient response is given by the damped sinusoidal component.

The transient response of c{t)=e %> [m 155 sin(+/0.75 t) + cos(+0.75 t}]

The value of £ and @_can be estimated by comparing the characteristic equation of the system with standard form of
second order characteristic equation.

n 82+ 2w s+ l=gi+s+]

On comparing we get,
" wZ=1 | 2o, =1
o, =lrad/sec | - C=m—=~=05

:2mn=2



=Ln 5% c{t} i

Maximum overshoot, M, = eﬂz =gV0%% ~ (163 4 1163 |===--
% Maximum overshoot, %M, =M, x100=0163x100=16.3%  11-- /-2 X --f-X -/ /¢
o T 4 n :
Peak time, t, = — = = — = 3,628 sec '
YR RN :
The response of the system is underdamped and itis shown in’ 0 1,=3.628 sec

fig

RESULT

Transientresponse of the system, c(t) = 9‘0'5‘[[].1 155sin(v/0.75 t) + cos(¥0.75 t)]
16.3%
3.628 sec

% Maximum peak overshoot, %M,

Peak time, tP

~V



8) A unity feedback control system has an open loop trar;zsfer function, G(s) = 10/s(s+2). Find the rise time, percentage
overshoot, peak time and settling time for a step input of 12 units.

SOLUTION

l Note - The formuiae for rise time, percentage overshoot and peak time remains same for unit step and step input.

- - -

The closed I@p transfer function, g((:; = 1?&1}. | R(s)
The closed loop u'ansfef_ﬁ.lr_}ction, |
Given that, G(s) = 10/s (s+2) Fig 1 : Unity feedback system.
10
Cls) _ s(s*+2) _ 10 10 (*
" RS) 4,10 s(s+2)+10 s7+25+10 o
S (s+2)

The values of damping ratio £ and natural frequency of oscillation o are obtained by comparing the system transfer
function with standard form of second order transfer function. :



Standard form of } C(s) o2

n
Second order transfer function| R(s) s+ 20w+ 07

On comparing équaﬁun (1) & (2) we get,

®2 =10 2w, =2 |
= 2 1
o, =+10=3.162 rad/ sec soL= = =0.316
On =¥ | ~" 2. 3182
. ||1_;-2 f4 2
o=tan Y2 _tan ' Y1=0316 _1okg rad
S 0.316
0g=0n1-¢% =316241-0316% =3 rad/sec
Rise time, t. =~ 8 F1249 =0.63 sec
- Oy 2
i 0.316%

Percentage overshoot, %M, = e“”’z x 100 = eV-0316% L 100
| = 0.3512x100=35.12%

35.12

Peak overshoot = 5 x 12 units = 4.2144 units

Peaktime, 1t = _—ﬂ—= % =1047 sec
O4



1T 1
to, 0.316x3162

.. For5% error, Settling time, {, =3T =3sec

=1sec

Time constant, T =

For 2% error, Settling time, 1, =4T =4 sec

RFSIIT

Rise time, { = (.63sec
Percentage overshoot, %M, = 35.12%
Peak overshoot = 4.2144 units, (for a input of 12 units)
Peak time, t = 1.047 sec '
Settfing time, t, = 3secfor5% emor

L = 4secfor2% eror

9) . d’c _dc
A closed loop servo is represented by the differential equation prey + BE =64 e

Where c is the displacement of the output shaft, ris the displacement of the input shaft and e =r - ¢. Determine
undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input.

SOLUTION

The mathematical equations goveming the system are,

dc _dc
—+8—==64e
dt? dt

e=r-¢



Pute=r-c in equation.

o dt?
Let L{c}=C(s)and £{ri} =R(s)
On taking Laplace transform of equation (3) we get,
§2 C(s) + 8s C(s) = 64 [R(s) - C(s)]
- 82C(s) +8s C(s) + 64 C(s) =64 R(s)
(s?+8s +64) C(s) =64 R(s)

. Cs) 64
" R(s) s?+8s+64

dc
8—=64r-c
+8—-=04r-¢)

The ratio C(s)/R(s) is the closed loop transfer function of the system. On comparing the system transfer function with
standard form of second order transfer function, we can estimate the values ofCand o . '

Standard form of - C(s) w2
Second order transfer function| R(s) s+ N s+02
On mmparing equation (1) & (2) we get,

0’ =64 Lo, =8
8 8
L=

20, 2x8

. o,=8rad/sec 0.5




-Lx . 5
Percentage peak overshoot, %M, —e'™ 1100 =eV-05 X100 =16.3%

RESULT

Undamped natural frequency of oscillation,®, = 8rad/sec
Damping ratio, =05
Percentage peak overshoot, %M, = 16.3%



TYPE NUMBER OF CONTROL SYSTEMS

The type number is specified for loop transfer function G(s) H(s). The number of poles of the loo;:
transfer function lying at the origin decides the type number of the system. In general, if N is the numbe!

of poles at the origin then the type number is N.

The loop transfer function can be expressed as a ratio of two polynomials in s.

P(S) _ o (5+2) (5+2) (5+2) oo (2 49

Q(s)  sN(s+py) (5+P;) (S+P3) weenee 3
where, Z, Z, Z;, «oenseasnens are zeros of transfer function

Pis Dip Diy ciisasimsiins are poles of transfer function

K = Constant

N = Number of poles at the origin

G(s) H(s) =K

The value of N in the denominator polynomial of loop transfer function shown in equation (2.49*;?
decides the type number of the system. ' |

If N = 0, then the system is type — 0 system

If N = 1, then the system is type — 1 system

If N = 2, then the system is type — 2 system

If N = 3, then the system is type — 3 system and so on.




STEADY STATE ERROR

The steady state error is the value of error signal e(t), when t tends to infinity. The steady stat
error is a measure of system accuracy. These errors arise from the nature of inputs, type of system an
from non linearity of system components. The steady state performance of a stable control system 1
generally judged by its steady state error to step, ramp and parabolic inputs.

Consider a closed loop system shown in fig R(s) E(s Al C(s)
Let, R(s) = Input signal % | l
: H(s)

E(s) = Error signal CEME)
C(s) H(s) = Feedback signal

C(s) = Qutput signal or response
The error signal, E(s) = R(s) — C(s) H(s)
The output signal, C(s) = E(s) G(s)
E(s) = R(s) - [E(s) G(s)] H)
E(s) + E(s) G(s) H(s) = R(S)
E(s) [1 + G(s) H(s)] = R(s)

_ R(s)
T 1+ G(s) H(s)

5 E(8)



Let, e(t) = error signal in time domain.

e g . R(s)
ne(t)=L{E@)=L {1+G(s) H(S)}

Let, e.= steady state error.

The steady state error is defined as the value of e(t) when t tends to infinity.

Leg= Lt et) -

{0

The final value theorem of Laplace transform states that,
If, F(s)=L{f(t)} then, tLt f(t) = LtsF()

Using final value theorem,

The steady state error, e, = Lt e(f)= Lt sE(s)= Lt — :}I:()SL( ;
t—ce 5— s— S S




STATIC ERROR CONSTANTS

When a control system is excited with standard input signal, the steady state error may be zero,
constant or infinity. The value of steady state error depends on the type number and the input signal.
Type-0 system will have a constant steady state error when the input is step signal. Type-1 system will
have a constant steady state error when the input is ramp signal or velocity signal. Type-2 system will

IS NRL [,

have a constant steady state error when the input is parabolic signal or acceleration signal. ™

Positional error constant, K, = Ltﬂ G(s) H(s)
- s
Velocity error constant, K, = Ltﬂ s G(s) H(s)
5> :
Acceleration error constant, K, = Lt s*G(s) H(s)

The K , K and K are in general called static error constants.

Steady state error when input signal is unit step signal:

Steady state error, e = Lt ST
y » %= 50 1+ G(s) His)
When the input is unit step, R(s)=1/s
1 | - |

5_ . e
. _ g _ 1 - ]. _ 1
Seg = Lt = Lt =

s>0 1+G(s)H(s) s—0 1+G(s)H(s) 1+ Ltﬂ G(s)H(s) 1+K,

where, K, = Lt G(s) H(s)
530 -

The constant K is called positional error constant.



Type-0 system

(s+z) (st z) (s+23)...... _ Zy.Zg. 2500 tant
= Lt G(s)H(s)= Lt K = K _ = ¢constan
K s—0 (8) H(s) =0  (s+p;) (5FPa) (5FDP3)en Pi-P2:P3eseees
S B = = constant
1+K,
Type-1 system

+ + +

K, _LtG{s)H{s)-u g Erm) 6rz) 6r ).

0 s(s+py) (5"'13’2)(5"'133) ------

_ 1 1 -

B = =
1+K,. I+

In systems with type number 1 and above, for unit step input the value of K_ is infinity and so the
steady state error is zero. -

STEADY STATE ERRORWHENTHE INPUT IS UNIT RAMP SIGNAL

Steady state error, e, = Lt SR(s)
: s»0 1-+ G(s) H(s)

When the input is unit ramp, R(s) = iz
5

1
. 52 1 -
Soee = Lt S = Lt = . _ !
s—0 1 +G(s) H(s) s—0 s+sG(s) H(s) Ltu sG(s) H{(s) K,
- s—»

S, R —_— T od o T N E Ty



Type-0 system

K, = LtsG(9) HE = Lt K (5+2) ($2) (5+Z)...
=0 (5+py) (5+p2) (8+P3)eenen.
e =1/K,=1/0= |
Hence in type-0 systems when the input is unit ramp, the steady state error is infinity.

Type-1 system

| . |
K, = LIt SG(S) H(s)= Lt sK-Sr2)*2) 64 %) _ o 223 23 on iy
530 s(s+p1}(s+pa.}(s p3} ...... PyP2 Pyeeeers

~.e, =1/K, = constant

Hence in type-1 systems when the input is unit ramp there will be a constant steady state error.

Type-2 system

K = Lt SG(S} H(S} Lt EK (S+Zi:}(5+zg) (5+23) ...... o
>0 g (s+p) (5+py) (5+P3)eeeves
-:es&=1flK\r=1fm=D )

In systems with type number 2 and above, for unit ramp input, the value of K_ is infinity so the
steadv state error is zero.



STEADY STATE ERRORWHENTHE INPUT IS UNIT PARABOLIC SIGNAL

Stf:ad} state error, e, = Lt SR(s)
s—>0 1+ G(s) H(s) -

1
3

When the input is unit parabola, R(s)=—

Si
iy 1 o 1
= 50 1+G(s) H(s) s+0 §°+s° G{s) H(s) Lt SG(s) His) K,

“where, K, = Lt s*G(s) H(s)
: 5

The constant K_ is called acceleration error constant,

L

Type-0 system

K, = Lt slG(s) H(s)= Lt s’K (572) (+2) (s+ 7). =0
0 (s+py) (8+Py) (31 Ps)enea.

Hence in type-0 systems for unit parabolic input, the steady state error is infinity,
Type-1 system

* K, = Lt G(s) H(s) = Lt &K (5+2)(5+2) (5+2z)......
' 30 5 (5+Dy) (5+Py) (5+ Ps)m

TTmen e gon dw remen T rvm et rmrmo e, Armes 1 aemd smrnsaen b o B o ¥ mine ot ol o ke T o e AR g W



Iype-Z system

K, = Lt SEG(S) H(s)= Lt SZK (5+7) (5+2) (5+2)... = K———2"""" = constant
=0 s'(s+p)) (s+pz}(s+p3) ------ ~ P1-P2-P3eeee

1
. €, = — = constant
a

Hence in type-2 system when the input is unit parabolic signal there will be a constant steady
state error.

Type-3 system

Lt ZG H Lt IK {5 zl} {5+22] {S+Z3) """" = .
Ko = LEsGEHE= s g’ (s+py) (s+pz) (5+P3)ee *
-ess=i=-1—-=0

K oo

In systems with type number 3 and above for unit parabolic input the value of K_is infinity and so
the steady state error is zero.



TABLE-2.2 : Static Errot Constant for TABLE-2.3 : Steady State Error for

Various Type Number of Systems Various Types of Inputs
Error Type number of system Input Type number of system
|Constant 0 1 2 3 Signal 0] 1 2 3
Kp constant an el 00 | 1
Uni
nit Step 1+K, 0 0 0
K, 0 constant 0 o0 1
Unit R o = 0 0
K, 0 0 constant | o . K.
1
Unit Parabolic! oo a0 E 0
1)
) ' ' 10(s + 2) ]
For a unity feedback control system the open loop transfer function, G(s) = m— . Find
+
a) the position, velocity and acceleration error constants,
b) the steady state error when the input is R(s), where R(s) = %— 2_? + 31 5
S =



SOLUTION

a) To find static error constants

For a unity feedback system, H{5)=i

Position error constant, K, = ;Llo G(s)H(s) = 5"106(5} = 152((2:?)) -

) ' _ _ L 10(s+2)
Velocity error constant, K, = sI;tms G(s)H(s) = =‘I:\tm',-?. G(s) _J;t.;. S 52(5+1) = a0
Acceleration error constant, K, = thn s?G(s)H(s) = sLt[}s.z{':}(s»]
2 12(s+2) _10x2_o
$—0 s%(s+1) 1
. : : ____Ri(s)
The errc:.r signal in 5 -domain, E(s)= T3 GlE) S(oHE)
| 3 2 1 10(s+2)
* 3.2, 1. “BTY L He)=1
Given that, R(s) el G(s) 26 (s)
3 2 1 3 2. 1
| --E(s}:ﬂ; S §E+353
" +10{s+2) 52[s+1]+10(5+g]_
s%(s+1) s’(s+1)

3 s%(s+1) 2 s%(s+1) L s%(s+1) ]
Ts|S2(s+0)+10(s+2)| 7| (s+1)+10(s+2)| 3s*|s*(s+N)+10(s+2)

The steady state error e_ can be obtained from final value theorem.



Steady state error, €, = [EE:} et)= ihI:]Fn‘s E(s)

3 s°(s+1) .2 s?(s+1) o [ s3(s+1) - ]}
"‘e“:sIZ}nS{_sut:sg(s+1)+1t}(s+2) - §? s’(s+7)+10(s+2)| 3¢’ s’(s+1)+10(s +2)

L 3s%(s + 1) _ 2s(s+1) | (s+1) }
=0 {52(s+1}+1ﬂ(s+2) s2(s+1)+10(s+2) 3s’(s+1)+30(s+2)

=0-0+—
60
1

" 60

2)

For servomechanisms with open loop transfer function given below explain what type of input signal giveriseto a
nstant steady state error and calculate their values.

20(s + 2)

| . N ~ 10
ey Y% eery 9 %9 e
_ 20(s+2)
2 G e, 3)

Letus assume unity feedback system, .~ H(s)=1

The open loop system has a pole at origin. Hence itis a
input will give a constant steady state error.

type-1 system. In systems with type number-1, the velocity (ramp)

The steady state error with unit velocity input, €y = 1

Velocity error constant, K, = RS s G(s) H{s) = (Lt s G(s)

_ 20(s+2) _20x2 40
- Lt S - = e—
$-0  s(s+1)(s+3) 1x3 3

Standy ctatn arrer o000 o i . _.3_\ Y




10
(s+2)(s+3)
Letus assume unity feedback system, .-, H(s)=1.

The open loop system has no pole at origin. Hence itis a type-0 syétem. In systems with type number-0, the step input
will give a constant steady state error. ' -

b) G(s)=

1
1+K,

The steady state error with unit step input, e, =

Position error constant, K, = SLID G(s)H(s) = s‘ tﬂG{s] = Lt 10 10 :g.

s-0(s+2)(s+3) T 2x3

1 _ 3 _3_ a5

1
1+Kp_1+g_3+5_8

Steady state error, e, =

10
si(s+1)(s+2) .
Letus assume unity feedback system, .. H(s)=1.

The open loop system has two poles atorigin. Hence itis a type-2 system. In systemns with type number-2, the
acceleration (parabolic) input will give a constant steady state error.

c) G(s)=

The steady state error with unit acceleration input, e, = Ki

‘Acceleration error constant, K, = Lt s? G(s)H(s) = Lt s2 G(s) = Lt 52 7 1;(5+2} - 1102 _5
' 5= -+ + X

Steady state error, ey = }: = %: 0.2




RESULT
1. In system (a) with unit velocity input, Steady state error =0.075

2. In system (b) with unit step input, Steady state error =0.375

3.In system (c) with unit acceleration input, Steady state error =0.2

3)

The open loop transfer function of a servo system with unity feedbackis G(s) = 10/s(0.1s+1). Evaluate the static error
constants of the system. Obtain the steady state error of the system, when subjected to an input given by the polynominal,

a
rt)=a,+at+ -2?-12 :

To find static error constant
For unity feedback system, H(s) = 1.
-.-Loop transfer function, G(s) H(s) = G(s)
The static error constants are K, K and K_.

Position error constant, K, = Lt G{s}‘ﬂaﬁ'ﬁ]ﬁ-{'}?ﬁ'

10
Velocity error constant, K, = Lt sG(s)= Lt SW

Acceleration error constant, K, = Lt s°G(s)= Lt s —S{D.‘I‘;+ 0
» 5 .



R(s)

The error signal in s -domain, E(s)=————/
1+ G(s)H(s)
» - 8. __ 10 o
Given that, rit)=a, +at+ 2 t*; G{s) s(ﬁ.15+‘!)’ H(s)=1

On taking Laplace transform of r(t) we get R(s),
3,381 ,3 2! 8 2 3

R{s)=?+$2 DT s ETP
8 8 _ 8 % 8 _ 8
(s)= Rs) _ s TS . s £
1+G(s)H(s) 4, 10 s (01s+1)+10
OB sk

_2|_ S(O01s+7) | a s(01s+) | @[ s(01s+])
s|s(0.1s+10+10| s?|s(0.1s+9+10| s°|s(0.1s+1)+10

—_ - _ [

The steady state error e  can be obtained from final value theorem.

Steady state error, e, = tLt e(t)= LtD s E(s)
—m 5—

{a,{ s(0.1s+1) ]+i{ '5{0_15+1) }+32{ s(01s+1) '”

2l = Lt — =2
Ess s—mﬁs s(01s+1)+10| s?|s(0Is+1)+10| s°|s(0Is+1)+10

[ asis+1)  af0is+y) L 208+) | oa

"e50| (I +10 " S(0I5+7)+10 - S50+ +10]| 10




4) Cs) Ks+b

Ris) s’+as+b’
(a-K)
—

Consider a unity feedback system with a closed loop transfer function Determine open loop

transférfunction G(s). Show that steady state errorwith unit ramp input is given by

For unity feedback system, H(s)=1

Cs) _ G(s) _ Gfs)
R(s) 1+G(s)H(s) 1+G(s)

The closed loop transfer function, M(s) =

G(s)

“Trae e

On cross multiplication of the above equation we get, -

G(s)=M(s)[1+G(s)] = M(s) + M(s) G(s)
Ks+b

o G(s)-M(s)G(s)=M(s) =  Gs)1-M(s)l=M(s) = Ms) =m

. Open loop transfer function,

Ks+b
Gis) = M) __s?+as+b _ Ks+b
1-M(s) 1_;(5—+h (52+as+b)-(l<s+b}
s“+as+b _
Ks+b Ks+b Ks+b

“s?+as+b-Ks-b sZ+(a-Ks s[s +{a.K)]



+
Velocity error constant, K, = Lt s G(s)H(s)= Lt sG(s) = Lt s Ks+b ~_ b
50 -0 50 s[s +(a- K)} a-K

With velocity input, Steady state error, e, = -K—.l- = ? ; K
v
RESULT
Open loop transfer function, _ G(s) = Ks*b
s [s+(a-K)]
a-K

With veloctiy input, Steady state error, €, =

= b



